skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sun, Zhong-Fa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. State-to-state rotational energy transfer in collisions of ground ro-vibrational state 13 CO molecules with N 2 molecules has been studied using the crossed molecular beam method under kinematically equivalent conditions used for 13 CO + CO rotationally inelastic scattering described in a previously published report (Sun et al. , Science , 2020, 369 , 307–309). The collisionally excited 13 CO molecule products are detected by the same (1 + 1′ + 1′′) VUV (Vacuum Ultra-Violet) resonance enhanced multiphoton ionization scheme coupled with velocity map ion imaging. We present differential cross sections and scattering angle resolved rotational angular momentum alignment moments extracted from experimentally measured 13 CO + N 2 scattering images and compare them with theoretical predictions from quasi-classical trajectories (QCT) on a newly calculated 13 CO–N 2 potential energy surface (PES). Good agreement between experiment and theory is found, which confirms the accuracy of the 13 CO–N 2 potential energy surface for the 1460 cm −1 collision energy studied by experiment. Experimental results for 13 CO + N 2 are compared with those for 13 CO + CO collisions. The angle-resolved product rotational angular momentum alignment moments for the two scattering systems are very similar, which indicates that the collision induced alignment dynamics observed for both systems are dominated by a hard-shell nature. However, compared to the 13 CO + CO measurements, the primary rainbow maximum in the DCSs for 13 CO + N 2 is peaked consistently at more backward scattering angles and the secondary maximum becomes much less obvious, implying that the 13 CO–N 2 PES is less anisotropic. In addition, a forward scattering component with high rotational excitation seen for 13 CO + CO does not appear for 13 CO–N 2 in the experiment and is not predicted by QCT theory. Some of these differences in collision dynamics behaviour can be predicted by a comparison between the properties of the PESs for the two systems. More specific behaviour is also predicted from analysis of the dependence on the relative collision geometry of 13 CO + N 2 trajectories compared to 13 CO + CO trajectories, which shows the special ‘do-si-do’ pathway invoked for 13 CO + CO is not effective for 13 CO + N 2 collisions. 
    more » « less
  2. null (Ed.)
    Knowledge of rotational energy transfer (RET) involving carbon monoxide (CO) molecules is crucial for the interpretation of astrophysical data. As of now, our nearly perfect understanding of atom-molecule scattering shows that RET usually occurs by only a simple “bump” between partners. To advance molecular dynamics to the next step in complexity, we studied molecule-molecule scattering in great detail for collision between two CO molecules. Using advanced imaging methods and quasi-classical and fully quantum theory, we found that a synchronous movement can occur during CO-CO collisions, whereby a bump is followed by a move similar to a “do-si-do” in square dancing. This resulted in little angular deflection but high RET to both partners, a very unusual combination. The associated conditions suggest that this process can occur in other molecule-molecule systems. 
    more » « less